C programming language

tutorialspoint

S I MPLYEASYULEARNINIG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

About The Tutorial

C is a general-purpose, procedural, imperative computer programming language
developed in 1972 by Dennis M. Ritchie at the Bell Telephone Laboratories to
develop the UNIX operating system.

C is the most widely used computer language. It keeps fluctuating at number
one scale of popularity along with Java programming language, which is also
equally popular and most widely used among modern software programmers.

Audience

This tutorial is designed for software programmers with a need to understand
the C programming language starting from scratch. This tutorial will give you
enough understanding on C programming language from where you can take
yourself to higher level of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of
Computer Programming terminologies. A basic understanding of any of the
programming languages will help you in understanding the C programming
concepts and move fast on the learning track.

Copyright & Disclaimer

© Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of
Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,
copy, distribute or republish any contents or a part of contents of this e-book in
any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as
precisely as possible, however, the contents may contain inaccuracies or errors.
Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,
timeliness or completeness of our website or its contents including this tutorial.
If you discover any errors on our website or in this tutorial, please notify us at
contact@tutorialspoint.com

§ptuteriaispoint

mailto:contact@tutorialspoint.com

Table of Contents

ADOUL TNE TULOTIAL ...ttt ettt et e ek e e e e ma bt e e an b et e e anbe e e e e nbe e e e imnr s [

F U o 1= o (ot ST P PP PPPPPPPPN i

e =TT o U] (OO PP PP PUPPPPPPPPPRPPPRPT [
(O70] o)/ 10 | g1 T 1=To F= 11 1= PSR i
TaDIE OF CONENTS. ...ttt rma e e bt r e n st e e e e e r e e r e e e nnn e snr e ii
1. OVERVIEW.....cciiiiiiiiiiiii s s nnnsn s s rmmns s s snnsa s s s mmmm s s s s anssssssnsnnnsnns 1.
FACES @DOUL €.ttt e e b e st btk ene e e R Rt R et R e e nnr e rn e 1
Y)Y O S PP O PP PP PP 1

O o oo = 4L TP PP PP PP TPPRP 2

2. ENVIORNMENT SETUR.... it me s s s s st smmmmae s s s s s s s mmmmnn e e 3
TrY L OPLON ONEIR ...ttt e bt e e skt e e e e s bb e e e e bbe e e e st e e e e aneee e 3
Local ENVIFONMENT SETUR......civiiiieieiee et s rnrnnes 3
BLIESD O =To 1o T PP OTP PR PPTPRR 3

B L= O @] 1T o] [SRR 4
INSTAAtION ON UNDX/LINUX ..cieittiiiiitieee et m ettt m ettt et na et e amas e e e s 4
INSTAIIAION ON MBC OS.....ciiiiiiii ittt e st e e s n e e e st n e et e s ab e e e e sane e e e srneeenans 5
INSTAAtION ON WINOOWS.......eeiiiiiiiii ittt eb ettt e st b e e s mn e e e et e e e enbae e e ennee 5

3. PROGRAM STRUCTURE........coouuiiiie et re s e s e mmmm e s s s s s s e s e e s mmmm s s nnas 6
HEIO WOTIA EXAMPIE. ...t ettt e e e et e e e abe e e e enneas 6
Compik aNd EXECULE C PrOGIEITL.veieiiteie ettt e ettt ettt e sttt e e ettt e e ekt e e as e e e s aabe e e e ebbe e s s ssbeeeeaneeas 7

4, BASIC SYN T AX it iirrrnssisismmmnsssssssssrsssssssssss s mmmm s s sssss s ssssssssssssssmmnnssssnsnsssssssnnes 8.
TOKENS TN €.ttt ettt a e mr e oottt e ek et e ook b et e oo s b emr e e e ek e e e e e ek b et e e sa b e e e e st rmr e e e e anree e 8
SEMICBONS. ... ettt ettt ettt e b e ook et e e e h b et e e e s bt et e e bt e e ek e e e e n b e e e e e b et et n e 8
LO70] 101104 1=T o 1S PP PO TPPTP 38

To =701 1) =T S PSR UPTRPRTPR 9

ii

g tutorialspoint

LS A0 0 S 9

RVAY] a1 G2 o = o= 1 o PRSP 10

5. DATA TYPES....coi ittt rrrsss s mmsma s s s s mmmm s s e s nn s ssssnssnns 11
e 1=To T Y] 01T OO TP PR PP 11
FloAtiNG P OINT TYPES ...ttt et e e e e b et e et e e e b be e e e sabe e e e eneee 13
LTS/ e (e R 1Y o 1= F TP PP PP PP PP PRP 14

6. VARIABLESt cmmm st st rre s mmmma s e e reaa s s e enaa s s e enas s e s e e ennseennnnnenns 15
Variable DefinitioN 1N C.....vvviiieieee ettt e e e nn e s e 15
Variable DecClaration iNooiiiiiie e 16
Lvalues and RVAIUES IN.C... ..ottt rm et e e s e e s sma e e s nn e e s nnnee e 18

7. CONSTANTS ANIERIALS.........cccuummiiimmmnmimmmmssssrennssasssssnsssssmmmnsssssssssssnsessssssss s nn 19
INEEGET LILEIAIS.eeeeiieiee ettt b et e et eme e ek e e e b b e e e e e nbe e e e st e e e e 19
FlOAtINGPOINT LILEIAIS.cueeiieitiiie ettt rm bbbt e bt e s amb e e bt e e e e eabe e e e 20

(O g F= T = Toa (=] G O] 11 = | S S OO P PP UUU PP PPPPN 20
Y11 To [=T =1 PP PP OP PR PRUPP 21
DEfiNING CONSLANTS.....coiiitiiieiitiee ettt et et e e e bt e e e s bt e s st e e s e bt e e e nbe e e e anbee e 22
The HOEfINE PrePrOCESSAL.......ccci it e e e e e e e e e e e e e e e e aeaaaaeaaeeees 22

THE CONSE KEYWOIL.... i e e e e e e e e e e e e e et e e et e e e e e e e ee st a s e s e e e e e eaeaaaaens 23

8. STORAGE CLASSES.......cccciiiiiiimmmmsssiinirrissss s srrnsssmmmss s snrssssss s sssss s mmmmsssassss s 24
L= LU (o I (o] = Lo [I O = T SRR 24
The register STOrage ClaSS.......ou ittt am e e e e e eneeas 24
THE SEAIC STOrAgE ClaSS.ueiiiiiiiee ittt ettt et e e s sna e e e anbe e e e abreeeenene 25
The eXLErn StOragE ClASScoiuiiieiiiiie ittt ettt b e e e bt e et e e e ebre e e e e 26

0. OPERATORS......cce ittt o sre s s e e s s rna s mmmm s e s s ena s enan s s an s e ssmmmma s snnsssrnnsnnnnnns 28
ATTENMETIC OPEIALIOISeeeteeie ittt srt ettt rms e s et s st e et e s am e e e e b e e e s anb e e e e ennns 28
REIAtIONAI OPEIAIOTSeiiitiiiei ittt ettt ekt e e et e e et et et e et e e e e b e e e s sare e e e ennes 30

ifi

g tutorialspoint

[0 TTo= L@] 01T - (o] =SS 32

T TSI @ 01T - (0] =TSR 34
F SIS (o] =T L A @] =T = L (o] TSP 37
MiSC Operatordl SiZEOT & LEIMAIY......ciiuuiii ittt rirt ettt im et e et e e sbe e e s amanne e 40
Operators PreCedenCe iN.C... ... uiiiiiiieeeiiiieeee et e e rteee et estrreme e e e snneessnneeessnneemeessnneeessneees s A1
10. DECISION MAKING.......cuciiiieiiriicmmm e renn s rrna s s rsmmmm s reas s s renn s s eenn s s essmmmm s eeesansd 45
1] F= U=T 0 1T o | U P PP U PP U PPPPPY 46
I f el S e St Al e L s 48
if...else if...elSe StAateMENL........cccoi i 4O
NEStEd If STAIEMENTS.cci it am e e e s e e enns 51
SWILCN STATEIMENT. ...ttt r et e e s r et e e st e e sma et e e s r e e e e e nnre e e s snreeeenanan 53
Nested SWILCh STAtEMENTS ... e 55
BN 4 (SR O] o 1= = (o R PP P TP O PP PP OPRI 57
T 10 0 PP .58
111 [o Yo o PO PSP OUP P OPRRN 59
(0] g1 o o] o IO PSP OUPRO PSRN 61
(o o TV o T T O = S o 1 o 10 63
[N LSESY (=0 [o Lo o L= USRS 65
(IoTo] o @01 11 {11] F=1 =11 0= 1] £ 67
Preak STATEMENT. ... it e s na e s e e e 68
CONTINUE SEALEMENT. ...ttt ettt re et e bt e e sabb e e s abe et e s ama bt e e e e asbe e e e anbeeeesnneee s 70
(o 01 (o J0S] = 11=T 1 0= o1 SO P PP RRT PP PPI 72
BN A TSR YTV =T e To] o APPSR PURP PR 74
DefiNiNg @ FUMEONcooiuiiiiiiiiiee ettt e e et e s bt e e e sb bt e e e ssbe e e e smn bt e e e sbbeeessbbeeeesnbeeeeann 76
FUNCHION DECIAIATIONSeeeie ittt m ettt rm et e am e e e s e e 77
iv

tutorialspoint

L0 {110 = T8 01T o) 78

LT Tox 110 oY AN o 18] 0= o1 PSR 79
(O 118 0N £ 111 TRRSRY 80
Call DY RETEIENCE. ... ettt et e e s ma bt e e st e e e e e sbb e e e e snbeeeesanaes 81
13. SCOPE REB......coooiiiiiiiiiiiieemmm s rree s s s e s s s e s e s e rnnss e e s s s s mmmmn e seesennnnnsd 84
LOCAI VAIADIES ...ttt ettt e e e st enr e e e e e s e enbbbe e e e e e e e ennbeeenreeeens 84
(€1 [0] o T LIV T = 1] L PRSP 85
FOIMAI PAraMELEIS.....cuieii ittt set ettt sttt ns bt e e sttt e e s st b e e e shbeee e s mnbe e e e sbeeeesabbeeeesnbeeeeann 86
Initializing Local and Global VariabIeS...........uuiiiiiiiiiiiie ettt a e e 87
A o P 89
[T T0d P 1T A 4 = Y2 PSP 89
INTEALIZING ATTAYS .. ettt ekt e skt e e e a bt e e e st e e e sbe e e s anb b e e e enbb e e e s anbenas 89
ACCESSING ATAY EIEMENIS. ...t et am e e 90
AITAYS TN DBLAIL. ..ottt ame ettt 91
MUIEAIMENSIONAI ATTAYSeeeieiiiiiie ettt e et e st e e e et e e e e e anbne e e s e nnnreas 92
TWO-AIMENSIONAD AFTAYS. .. eeeeiiiteiee ettt e sttt ettt s bttt e e s sttt e e s bbbt e e s aabbe et e e s anbbneeeeannneeeens 92
Initializing TWEDIMENSIONEAI AITAYS........uvuuieitiiiiniiiiiaeeeeeeaeeaetetetereeereaerertar e aaaaaaaaaaaaaaeeene 93
Accessing Twbimensional Array EIEMENtS.............ooooiiiiiiircrrs e a3
Passing Arrays t0 FUNCLQNS..........ooiiiiiiiiieeeeie s e e e e e e e e e e s e s e e e e eaaaaeas 94

Return Array from @ FUNCHIOM...........cooiiiiiieeee e e e e eeaeeeeas 96

POINLET TO BN AT TAY .. et ettt ettt e ettt et e e s bb et e e e e atb b e e e e s sabbeeeeessabbeeeeeeasbaeeeeeane 99

15. POINTERS..... .o mmmm s s s s s mmmm e en s e ennaa s ernnan 101
RVAT Tz U= L TN o [T =T £ 101
HOW 10 USE POINIEIS?.....eeeiiiee ettt ettt e e e s e s rme sttt e e e e s e ans e e e e e e s nnamns e eeaeeessnnnnnneeeeeas 102
N1 I 0 T =SSR 103
POINTEIS IN DELAIL. ...ttt e e e e rm b e e e e e e e st e e e e e e e e e aaan 104
POINTEI AFENIMETIC. ...eeeeeie ettt e e e e e e e e e e s e aab b e e eeaaaaee e e s 104
INCrEMENTNG @ POINTEE ...t e e e e e e e bt re e e e e e e e e e e e e aannnnes 105

\'

tutorialspoint

(D= Tor =10 0= o 1] To = T =011) (=] oSSR 106

Lo]) (=T @0 4 g o T T[T o U= RSERRR 107

F N = (Ao 101 (T PR 108

Lo 1) (=T (o T o] o (=] O PR S 110
Passing POINIErS t0 FUNCHIONSuiiiiiiie ittt e e e e e e s s e e e eaaaaeeee e s 112

Return Pointer from FUNCLIONS. ...t a e e e e 114

16. STRINGS ... e cere e s rn s e e e s e e s e e s e s mmmasa s s nnsnnssnnnnnnns 117
17. STRUCTURES........ et rrr s rr s s s s mmmm s s s n s mmmm s s e n s 120
D= 1oLl To = TS (0 (od 11] (=R 120
ACCESSING SEUCIUIE MEMDIELS.....ci i i e 121
Structures as FUNCHON ANQUMENLS.uuuuuuurerurerrrrimessrnrnrnrersreereererereeee ettt 122
POINTEIS 10 SITUCTUMES. .. eeeii e e ittt i ettt e e e e e et amr et e e e e e e snabeeeeeeessnbesamsaeeaeeesnnsneaeeaeeennns 124

2T =T o R PR 126
18, UNIONS .. .ottt cmme s s e s s mmmm s s s s ena s s ena s s mmmms s s snnan s s snnnn s s ennan 128
DEfiNING @ UNION. ...ttt e skt e e e st e e e e s mab e e e e ba e e e s abbeeeesnbeeeesanns 128
ACCESSING UNION MEIMDELS.eeiiiiiiie ettt ni ettt e et e e et e e simr e e s sabe e e e enenas 129
19. BIT FIELDS.......ccoee it mmmm e ss s s s s s s mmmm s e s s s s rnns s s mmmm s s nnnns s snnnnnses 132
Bit Field DECIAIAtION.eeeeiiiee ittt et et e e ettt e e e e e s bbbt e e et e e e e et b e e e e e e e e annbnneeas 133
20. TYPEDKERF. ... ttmmme et rrrna s srrna s rrmmmm s s rn s e rn s s e rna s s e mmmm s s e s s s s e e s snnnnn 136
typedef VS H#AETING ... ——————————————————————— 137
21. INPUT AND OQUTRUT..... oo itmmmecree e ertea s s rena s s remmmm e rea s e e ren s s e enn s s e e mmmm e eees 139
LI LEIRS] = T Lo F= U0 I 1o R 139
The getchar() and pUtChaYFUNCLIONScouiiiiiiie e e e 139
The gets() and PULS() FUNCHONSccoiiiiieiiiie ettt ettt e e e s smnb e e e eneeas 140
The scanf() and printf() FUNCLIONSoooi i 141

pZ A | O 143
vi

§ptuteriaispoint

L0 0 T=] 11 o 1= S SERS 143

L0107 oo = T 1= SRR 144

R VAY 1TV = B SR 144
REAAING 8 FlB....cci ittt et et e e s n e e e e anb e e e 145
BiINAIY 1/O FUNCLONS......ceiiiiiiei ittt ettt e ettt ekt e e st e e e sabe e e e st be et e e sb b e e e e sabeeeesnbneeeaa 146
23. PREPROCESSORS....... oottt et e e st s s et mmmm s s s s e s s s mmmm s s 147
PrEPrOCESSOIS EXAMPIES. ..ciiiiieiiiiie ittt ettt et e et e s n bt e st r e e enbe e e e nees 148
PredefiNead MECIOSiiiiieii ettt e et s e e sn e s n e ane e e neeennes 148
PrEPrOCESSOr OPEIALOLS. .. evuttuiieiee e ittt ettt e et ee ettt e e e e e et e e e tnr s e e e e e e e e ee bbb teeeeeeeeeannanseeeeaeseeesensaans 150
The Macro ContinUAtiON Y OPEIatOf...........uuuuririiiiiiiieie e e e e e e e e ee e e e e e e e e aeaaes 150

The StringiZe (#) OPEIalOr.........ccci i i e e e e e et e e e e s e s eeeaaaaaaas 150

The Token Pasting (H##) OPEIalor.........oovvieeiiiiiiiiiiesia s st e e e e e e e e e e e e e e e e aeae e e e eeeaas 150

The Defined() OPEIALOL.......coii ittt ettt e e e et e e e e et r e e e e nnneeas 151
Paramet@iZEd IMACIOS.ciiiiiiee ittt et e et e e et bt e s aab e e e e anbb e e e etre e e enres 152
24. HEADER FILES..........c oottt s enmmmm s s s r e s s rnna s e mmmm e enna s e ennnn s 153
o 0o (oIS Y g - Ve PP PO UUPP PP 153

[aTod [0 (=Y @ o 1T = L1 o] o AR 153
ONCEONIY HEAUEIS.ttt ieteb et ae e e e e eeee e s anssseeseseeeeeeeeetaaeaaaaaaaaameaeaaaaaaaaaaaaaaaaeaeneeas 154
(070] 0 T o 10} (=10 I | g Tod 18 To /=T3PPSR 155
25, TYPE CASTING....coiiiittunniiiiimsmmmsssssssssssssssss s srsnssmmmss s sssssssssssssssssssss smmmssssnnnss s 156
Tl C=To = g = 010770] 1T] o R PP RRRPPP 157
Usual Arithmetic CONVEISION.......co.uuiiiiiiiiiiit ettt st e e s ab e e e sbee e e eneee 157
26. ERROR HANDLING........ccuiiiiiiiiscmmme s cren s srena s erena s mmmma s sesnn s sernns s sesnnssmmmmannseens 160
< To T o= g o (= T o IS (=T 1 o]) PSRRI 160
DAV To (o o)A =T o I =l o £ TP UURT PRI 161
Program EXIt STATUSoi ettt ettt e e e e e s bbb et e e e e e s bbb bt ene e e e e e e e nbnbeeeeeesaannneees 162

vii

g tutorialspoint

72 A = O 3] [164

NUMDBDEE FACIOTIAL ...ttt ettt et e n e r e r e e r e e ne e e ne e e nnne e e 164

[l oTo] g F= ot o ST =T = ST PR PR PP 165
28. VARIABLE ARGUNIGN.......cccuuiiiiiiriieimmmm s srreesss s s e s s e e senen e e s s s mmnas 167
29. MEMORY MANAGEMEN........citteiiiiiecrtmmmm e e rr s sr s e mmmm s srenn s s e 170
Allocating Memory DYNAMICAUIY.........ccoiuiieiiiiie ettt enr e 170
Resizing and RelEaSING MEIMOLY........uuiiiiiiii ittt seb e e b e e 172
30. COMMAND LINE ABMEENTS.......ccoooiiiiimmmiriinnrmmmssssssssssssssssssssssssmmmmsssssssnsssssnsnnns 174
vili

g tutorialspoint

1. OVERVIEW

C is a general-purpose, high-level language that was originally developed by
Dennis M. Ritchie to develop the UNIX operating system at Bell Labs. C was
originally first implemented on the DEC PDP-11 computer in 1972.

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as the K&R standard.

The UNIX operating system, the C compiler, and essentially all UNIX application
programs have been written in C. C has now become a widely used professional
language for various reasons:

e Easy to learn

e Structured language

e It produces efficient programs

e It can handle low-level activities

e It can be compiled on a variety of computer platforms

Facts about C

e C was invented to write an operating system called UNIX.

e C is a successor of B language which was introduced around the early
1970s.

e The language was formalized in 1988 by the American National Standard
Institute (ANSI).

e The UNIX OS was totally written in C.

e Today C is the most widely used and popular System Programming
Language.

e Most of the state-of-the-art software have been implemented using C.

e Today's most popular Linux OS and RDBMS MySQL have been written in
C.

Why Use C?

C was initially used for system development work, particularly the programs that
make-up the operating system. C was adopted as a system development
language because it produces code that runs nearly as fast as the code written
in assembly language. Some examples of the use of C might be:

e Operating Systems

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

e Language Compilers

e Assemblers

e Text Editors

e Print Spoolers

e Network Drivers

e Modern Programs

e Databases

¢ Language Interpreters
o Utilities

C Programs

A C program can vary from 3 lines to millions of lines and it should be written
into one or more text files with extension ".c"; for example, hello.c . You can
use "vi", "vim" or any other text editor to write your C program into a file.

This tutorial assumes that you know how to edit a text file and how to write
source code inside a program file.

g tutorialspoint

2.ENVIORNMENT SETUP

Try it Option Online

You really do not need to set up your own environment to start learning C
programming language. Reason is very simple, we already have set up C
Programming environment online, so that you can compile and execute all the
available examples online at the same time when you are doing your theory
work. This gives you confidence in what you are reading and to check the result
with different options. Feel free to modify any example and execute it online.

Try following example using our online compileroption available at
http://www.compileonline.com/.

#include <stdio.h>

int main()

{
* my first prog ram in C */
printf ("Hello, World! \n");

return O;

}

For most of the examples given in this tutorial, you will find the Try it option in
our website code sections at the top right corner that will take you to the online
compiler. So just make use of it and enjoy your learning.

Local Environment Setup

If you want to set up your environment for C programming language, you need
the following two software tools available on your computer, (a) Text Editor and
(b) The C Compiler.

Text Editor

This will be used to type your program. Examples of a few editors include
Windows Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

' tutorialspoint

SIMPLYEASYLEARNING

http://www.compileonline.com/

C Programming

The name and version of text editors can vary on different operating systems.
For example, Notepad will be used on Windows, and vim or vi can be used on
Windows as well as on Linux or UNIX.

The files you create with your editor are called the source files and they contain
the program source codes. The source files for C programs are typically named
with the extension ".c".

Before starting your programming, make sure you have one text editor in place
and you have enough experience to write a computer program, save it in a file,
compile it and finally execute it.

The C Compiler

The source code written in source file is the human readable source for your
program. It needs to be "compiled" into machine language so that your CPU can
actually execute the program as per the instructions given.

The compiler compiles the source codes into final executable programs. The
most frequently used and free available compiler is the GNU C/C++ compiler,
otherwise you can have compilers either from HP or Solaris if you have the
respective operating systems.

The following section explains how to install GNU C/C++ compiler on various OS.
m We keep mentioning C/C++ together because GNU gcc compiler works for
both C and C++ programming languages.

Installation on UNIX/Linux

If you are using Linux or UNIX, then check whether GCC is installed on your
system by entering the following command from the command line:

$gcc -v

If you have GNU compiler installed on your machine, then it should print a
message as follows:

Using built -in specs.

Target : 386 - redhat - linux

Configured with : ../ configure -- prefix =/usr ...
Thread model: posix

gccversion 4.1.2 20080704 (Red Hat 4.1.2-46)

If GCC is not installed, then you will have to install it yourself using the detailed
instructions available at http://gcc.gnu.org/install/.

This tutorial has been written based on Linux and all the given examples have
been compiled on the Cent OS flavor of the Linux system.

§p tuteriaispoint

C Programming

Installation on Mac OS

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode
development environment from Apple's web site and follow the simple
installation instructions. Once you have Xcode setup, you will be able to use GNU
compiler for C/C++.

Xcode is currently available at developer.apple.com/technologies/tools/.

Installation on Windows

To install GCC on Windows, you need to install MinGW. To install MinGW, go to
the MinGW homepage, www.mingw.org, and follow the link to the MinGW
download page. Download the latest version of the MinGW installation program,
which should be nhamed MinGW-<version>.exe.

While installing MinGW, at a minimum, you must install gcc-core, gcc-g++,
binutils, and the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment
variable, so that you can specify these tools on the command line by their simple
names.

After the installation is complete, you will be able to run gcc, g++, ar, ranlib,
dlltool, and several other GNU tools from the Windows command line.

> utorialspoint

3.PROGRAM STRUCTURE

Before we study the basic building blocks of the C programming language, let us
look at a bare minimum C program structure so that we can take it as a
reference in the upcoming chapters.

Hello World Example

A C program basically consists of the following parts:

e Preprocessor Commands
e Functions

e Variables

e Statements & Expressions
e Comments

Let us look at a simple code that would print the words "Hello World":

#include <stdio.h>

int main()

{
/* my first program in C */
printf ("Hello, World! \n");

return O;

Let us take a look at the various parts of the above program:

1. The first line of the program #include <stdio.h> is a preprocessor
command, which tells a C compiler to include stdio.h file before going to
actual compilation.

2. The next line int main() is the main function where the program execution
begins.

3. The next line /*...*/ will be ignored by the compiler and it has been put to
add additional comments in the program. So such lines are called
comments in the program.

6

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

The next line printf(...) is another function available in C which causes the
message "Hello, World!" to be displayed on the screen.

. The next line return 0; terminates the main() function and returns the

value 0.

Compile and Execute C Program

Let us see how to save the source code in a file, and how to compile and run it.
Following are the simple steps:

1.
2.
3.

Open a text editor and add the above-mentioned code.
Save the file as hello.c

Open a command prompt and go to the directory where you have saved
the file.

Type gcc hello.c and press enter to compile your code.

5. If there are no errors in your code, the command prompt will take you to

the next line and would generate a.out executable file.

Now, type a.out to execute your program.

7. You will see the output "Hello World" printed on the screen.

$gcchello .c

$./ a. out
Hello , World!

Make sure the gcc compiler is in your path and that you are running it in the
directory containing the source file hello.c.

> utorialspoint

4.BASIC SYNTAX

You have seen the basic structure of a C program, so it will be easy to
understand other basic building blocks of the C programming language.

Tokensin C

A C program consists of various tokens and a token is either a keyword, an
identifier, a constant, a string literal, or a symbol. For example, the following C
statement consists of five tokens:

printf ("Hello, World! \n");

The individual tokens are:

printf
(
"Hello, World! \n"

)

Semicolons

In a C program, the semicolon is a statement terminator. That is, each individual
statement must be ended with a semicolon. It indicates the end of one logical
entity.

Given below are two different statements:

printf ("Hello, World! \n");

return O;

Comments

Comments are like helping text in your C program and they are ignored by the
compiler. They start with /* and terminate with the characters */ as shown
below:

/* my first program in C */

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

You cannot have comments within comments and they do not occur within a
string or character literals.

|[dentifiers

A C identifier is a name used to identify a variable, function, or any other user-
defined item. An identifier starts with a letter A to Z, a to z, or an underscore *_’
followed by zero or more letters, underscores, and digits (0 to 9).

C does not allow punctuation characters such as @, $, and % within identifiers.
C is a case-sensitive programming language. Thus, Manpower and manpower
are two different identifiers in C. Here are some examples of acceptable
identifiers:

mohd zara abc move_name a 123

myname50 _temp | a23b9 retval

Keywords

The following list shows the reserved words in C. These reserved words may not
be used as constants or variables or any other identifier names.

auto else long switch
break enum register typedef
case extern return union
char float short unsigned
const for signed void
continue goto sizeof volatile
default if static while

do int struct _Packed
double

g tutorialspoint

C Programming

Whitespace in C

A line containing only whitespace, possibly with a comment, is known as a blank
line, and a C compiler totally ignores it.

Whitespace is the term used in C to describe blanks, tabs, newline characters
and comments. Whitespace separates one part of a statement from another and
enables the compiler to identify where one element in a statement, such as int,
ends and the next element begins. Therefore, in the following statement:

int age;

there must be at least one whitespace character (usually a space) between int
and age for the compiler to be able to distinguish them. On the other hand, in
the following statement:

fruit = apples + oranges; /I get the total fruit

no whitespace characters are necessary between fruit and =, or between = and
apples, although you are free to include some if you wish to increase readability.

10

g tutorialspoint

9. DATA TYPES

Data types in C refer to an extensive system used for declaring variables or
functions of different types. The type of a variable determines how much space
it occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows:

S.N. Types and Description

1 Basic Types:

They are arithmetic types and are further classified into: (a) integer
types and (b) floating-point types.

2 Enumerated types:

They are again arithmetic types and they are used to define variables
that can only assign certain discrete integer values throughout the
program.

3 The type void:

The type specifier void indicates that no value is available.

4 Derived types:

They include (a) Pointer types, (b) Array types, (c) Structure types, (d)
Union types, and (e) Function types.

The array types and structure types are referred collectively as the aggregate
types. The type of a function specifies the type of the function's return value. We
will see the basic types in the following section, whereas other types will be
covered in the upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their
storage sizes and value ranges:

11

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

Type Storage Value range
size
char 1 byte -128 to 127 or O to 255
unsigned 1 byte 0 to 255
char
signed char 1 byte -128 to 127
int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to
2,147,483,647

unsigned int 2 or 4 bytes 0to 65,535 0r 0to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned 2 bytes 0 to 65,535

short

long 4 bytes -2,147,483,648 to 2,147,483,647
unsigned 4 bytes 0 to 4,294,967,295

long

To get the exact size of a type or a variable on a particular platform, you can
use the sizeof operator. The expressions sizeof(type) Yyields the storage size of
the object or type in bytes. Given below is an example to get the size of int type
on any machine:

#include <stdio.h>

#include <limits.h>

int main()

{

printf ("Storage size for int : %d \'n", sizeof (int));

12

> utorialspoint

C Programming

return O;

}

When you compile and execute the above program, it produces the following
result on Linux:

Storage size for int : 4

Floating-Point Types

The following table provides the details of standard floating-point types with
storage sizes and value ranges and their precision:

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places
double 8 byte 2.3E-308 to 1.7E+308 15 decimal places
long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The header file float.h defines macros that allow you to use these values and
other details about the binary representation of real humbers in your programs.
The following example prints the storage space taken by a float type and its
range values:

#include <stdio.h>

#include <float.h>

int main()

{
printf ("Storage size for float : %d \n", sizeof (float));
printf ("Minimum float positive v alue: %E \n", FLT_MIN);
printf ("Maximum float positive value: %E \n", FLT_MAX);

printf ("Precision value: %d \n", FLT_DIG);

return O;

13

> utorialspoint

C Programming

}

When you compile and execute the above program, it produces the following
result on Linux:

Storage size for float : 4
Minimum float positive value : 1.175494E- 38
Maximumfloat positive value : 3.402823E+38

Precision value: 6

The void Type

The void type specifies that no value is available. It is used in three kinds of
situations:

S.N. Types and Description

1 Function returns as void

There are various functions in C which do not return any value or you
can say they return void. A function with no return value has the return
type as void. For example, void exit (int status);

2 Function arguments as void

There are various functions in C which do not accept any parameter. A
function with no parameter can accept a void. For example, int
rand(void);

3 Pointers to void

A pointer of type void * represents the address of an object, but not its
type. For example, a memory allocation function void *malloc(size_t
size); returns a pointer to void which can be casted to any data type.

14

§p tuteriaispoint

6. VARIABLES

A variable is nothing but a name given to a storage area that our programs can
manipulate. Each variable in C has a specific type, which determines the size
and layout of the variable's memory; the range of values that can be stored
within that memory; and the set of operations that can be applied to the
variable.

The name of a variable can be composed of letters, digits, and the underscore
character. It must begin with either a letter or an underscore. Upper and
lowercase letters are distinct because C is case-sensitive. Based on the basic
types explained in the previous chapter, there will be the following basic variable
types:

Type Description

char Typically a single octet (one byte). This is an integer type.
int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

C programming language also allows to define various other types of variables,
which we will cover in subsequent chapters like Enumeration, Pointer, Array,
Structure, Union, etc. For this chapter, let us study only basic variable types.

Variable Definition in C

A variable definition tells the compiler where and how much storage to create for
the variable. A variable definition specifies a data type and contains a list of one
or more variables of that type as follows:

type variable_list ;

15

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

Here, type must be a valid C data type including char, w_char, int, float, double,
bool, or any user-defined object; and variable_list may consist of one or more
identifier names separated by commas. Some valid declarations are shown here:

int i, j, k;
char c, ch;
float f, salary ;
double d;

The lineint i, j, k; declares and defines the variables i, j and k; which instruct
the compiler to create variables named i, j, and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The
initializer consists of an equal sign followed by a constant expression as follows:

type variable_name = value ;

Some examples are:

extern int d =3, f =5; /I declaration of d and f.

int d=3, f =5; /I definition and initializing d and f.
byte z = 22; /I definition and initializes z.

char x = X' ; /I the variable x has the value 'X'.

For definition without an initializer: variables with static storage duration are
implicitly initialized with NULL (all bytes have the value 0); the initial value of all
other variables are undefined.

Variable Declaration in C

A variable declaration provides assurance to the compiler that there exists a
variable with the given type and name so that the compiler can proceed for
further compilation without requiring the complete detail about the variable. A
variable declaration has its meaning at the time of compilation only, the
compiler needs actual variable declaration at the time of linking the program.

A variable declaration is useful when you are using multiple files and you define
your variable in one of the files which will be available at the time of linking the
program. You will use the keyword extern to declare a variable at any place.
Though you can declare a variable multiple times in your C program, it can be
defined only once in a file, a function, or a block of code.

Example

Try the following example, where variables have been declared at the top, but
they have been defined and initialized inside the main function:

16

§p tuteriaispoint

C Programming

#include <stdio.h>

/I Va riable declaration:
extern int a, b;
extern int c;

extern float f;

int main ()

{
[* variable definition: */
int a, b;
int c;

float f;

/* actual initialization */

a = 10;

b = 20;

cC=a+b

printf ("value of ¢ : %d \n", ¢©);
f =70.0/3.0;

printf ("value of f : %f \n", f);
return O,

}

When the above code is compiled and executed, it produces the following result:

value of ¢ : 30
value of f : 23.333334

The same concept applies on function declaration where you provide a function
name at the time of its declaration and its actual definition can be given
anywhere else. For example:

17

g tutorialspoint

C Programming

/I function declaration

int func ();
int main()
{

/l function call

int i = func ();

// function definition

int func ()
{

return O;
}

Lvalues and Rvaluesin C

There are two kinds of expressions in C:

e lvalue : Expressions that refer to a memory location are called "lvalue"
expressions. An lvalue may appear as either the left-hand or right-hand

side of an assignment.

e rvalue : The term rvalue refers to a data value that is stored at some
address in memory. An rvalue is an expression that cannot have a value
assigned to it which means an rvalue may appear on the right-hand side

but not on the left-hand side of an assignment.

Variables are Ivalues and so they may appear on the left-hand side of an
assighment. Numeric literals are rvalues and so they may not be assigned and
cannot appear on the left-hand side. Take a look at the following valid and

invalid statements:

int g = 20; /I va lid statement

10 = 20; /linvalid statement; would generate compile

-time error

> utorialspoint

18

/.CONSTANTS AND LITBRA

Constants refer to fixed values that the program may not alter during its
execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a
floating constant, a character constant, or a string literal . There are enumeration
constants as well.

Constants are treated just like regular variables except that their values cannot
be modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix
specifies the base or radix: 0x or 0X for hexadecimal, O for octal, and nothing for
decimal.

An integer literal can also have a suffix that is a combination of U and L, for
unsignhed and long, respectively. The suffix can be uppercase or lowercase and
can be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

OxFeelL /* Legal */

078 /* lllegal: 8 is not an octal digit */
032uU /* lllegal: cannot repeat a suffix */

Following are other examples of various types of integer literals:

85 [* decimal */

0213 * octal */

Ox4b [* hexadecimal */
30 *int */

30u * unsigned int */
30l * long */

30ul [* unsigned long */

19

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and
an exponent part. You can represent floating point literals either in decimal form
or exponential form.

While representing decimal form, you must include the decimal point, the
exponent, or both; and while representing exponential form, you must include
the integer part, the fractional part, or both. The signed exponent is introduced
by e or E.

Here are some examples of floating-point literals:

3.14159 /* Legal */

314159E 5L /* Legal */

510E /* lllegal: incomplete exponent */

210f /* lllegal: no decimal or exponent */

. e55 /* lllegal: missing integer or fraction */
Character Constants

Character literals are enclosed in single quotes, e.g., 'x' can be stored in a
simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g.,
"\t"), or a universal character (e.g., "\u02C0").

There are certain characters in C that represent special meaning when preceded
by a backslash, for example, newline (\n) or tab (\t). Here, you have a list of
such escape sequence codes:

Escape Meaning
sequence

\\ \ character
\' ' character
\" " character
\? ? character
\a Alert or bell

20

§p tuteriaispoint

C Programming

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . .. Hexadecimal number of one or more digits

Following is the example to show a few escape sequence characters:

#include <stdio.h>

int main()

{
printf ("Hello \tWorld \ n\ n");

return O;

}

When the above code is compiled and executed, it produces the following result:

Hello World

String Literals

String literals or constants are enclosed in double quotes "". A string contains
characters that are similar to character literals: plain characters, escape
sequences, and universal characters.

21

g tutorialspoint

C Programming

You can break a long line into multiple lines using string literals and separating
them using whitespaces.

Here are some examples of string literals. All the three forms are identical
strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"
Defining Constants

There are two simple ways in C to define constants:
e Using #define preprocessor

e Using const keyword

The #define Preprocessor

Given below is the form to use #define preprocessor to define a constant:

#define identifier value

The following example explains it in detail:

#include <stdio.h>
#define LENGTHILO

#define WIDTH 5
#define NEWLINE \ n'

int main()

{

int area;

area = LENGTH WIDTH

22

g tutorialspoint

C Programming

printf ("value of area : %d" , area);
printf ("%c", NEWLINE

return O;

}

When the above code is compiled and executed, it produces the following result:

value of area : 50

The const Keyword

You can use const prefix to declare constants with a specific type as follows:

const type variable = value ;

The following example explains it in detail:

#include <stdio.h>

int main()

{
const int LENGTH= 10;
const int WIDTH = 5;
const char NEWLINE= '\n';

int area;

area = LENGTH WIDTH
printf ("value of area : %d" , area);
printf ("%c", NEWLINE

return O;

}

When the above code is compiled and executed, it produces the following result:

value of area 50

Note that it is a good programming practice to define constants in CAPITALS.

23

g tutorialspoint

8. STORAGE CLASSES

A storage class defines the scope (visibility) and life-time of variables and/or
functions within a C Program. They precede the type that they modify. We have
four different storage classes in a C program:

e auto
e register
e static
o extern
The auto Storage Class

The auto storage class is the default storage class for all local variables.

{

int mount;

auto int month;

}

The example above defines two variables within the same storage class. ‘auto’
can only be used within functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored
in a register instead of RAM. This means that the variable has a maximum size
equal to the register size (usually one word) and can't have the unary '&'
operator applied to it (as it does not have a memory location).

{

register int miles ;

}

The register should only be used for variables that require quick access such as
counters. It should also be noted that defining 'register' does not mean that the
variable will be stored in a register. It means that it MIGHT be stored in a
register depending on hardware and implementation restrictions.

24

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

The static Storage Class

The static storage class instructs the compiler to keep a local variable in
existence during the life-time of the program instead of creating and destroying
it each time it comes into and goes out of scope. Therefore, making local
variables static allows them to maintain their values between function calls.

The static modifier may also be applied to global variables. When this is done, it
causes that variable's scope to be restricted to the file in which it is declared.

In C programming, when staticis used on a class data member, it causes only
one copy of that member to be shared by all the objects of its class.

#include <stdio.h>

/* function declaration */

void func (void);

static int count = 5; /* global variable */
main()
{

while (count --)

{

func ();
}
return O;

}

/* function definition */

void func (void)

{
static int i =5; /* local static variable */
i ++;
printf ("iis %d and count is %d \n", i, count);

}

When the above code is compiled and executed, it produces the following result:

i is 6 and count is 4

i is 7 and count is 3

25

g tutorialspoint

C Programming

i is 8 and count is 2
i is 9 and count is 1

i is 10 and count is O

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is
visible to ALL the program files. When you use 'extern’', the variable cannot be
initialized, however, it points the variable name at a storage location that has
been previously defined.

When you have multiple files and you define a global variable or function, which
will also be used in other files, then extern will be used in another file to provide
the reference of defined variable or function. Just for understanding, extern is
used to declare a global variable or function in another file.

The extern modifier is most commonly used when there are two or more files
sharing the same global variables or functions as explained below.

First File: main.c

#include <stdio.h >

int count ;

extern void write_extern ();

main()
{
count = 5;

write_extern ();

Second File: support.c

#include <stdio.h>

extern int count;

void write_extern (void)

{

26

> utorialspoint

C Programming

printf ("countis %d \n", count);

}

Here, extern is being used to declare count in the second file, whereas it has its
definition in the first file, main.c. Now, compile these two files as follows:

$gcc main . ¢ support . c

It will produce the executable program a.out. When this program is executed, it
produces the following result:

5

27

g tutorialspoint

9.OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical
or logical functions. C language is rich in built-in operators and provides the
following types of operators:

e Arithmetic Operators
e Relational Operators

e Logical Operators

e Bitwise Operators

¢ Assignment Operators
e Misc Operators

We will, in this chapter, look into the way each operator works.

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C
language. Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Adds two operands. A+ B=230
- Subtracts second operand from the first. A-B=-10
* Multiplies both operands. A * B =200
/ Divides numerator by de-numerator. B/A=2

% Modulus Operator and remainder of after an B % A =0

integer division.

++ Increment operator increases the integer value A++ =11
by one.

28

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

-- Decrement operator decreases the integer A--=9
value by one.

Example

Try the following example to understand all the arithmetic operators available in
C:

#include <stdio.h>

main()

{
int a = 21;
int b = 10;
int c ;
c =a+b;

printt ("Linel - Valueofcis%d \n", c),
c=a- b;

printt ("Line2 - Valueofcis%d \n", c),
c=a?* b

printt ("Line3 - Valueofcis%d \n", c);
c=al b;

printt ("Line4 - Valueofcis%d \n", c);
c =a%b;

printt ("Line5 - Valueofcis%d \n", c);
c = at++;

printt ("Line6 - Valueofcis%d \n", c),
c = a-;

printt ("Line7 - Valueofcis%d \n", c),

}

When you compile and execute the above program, it produces the following
result:

Line 1 - Value ofc is 31

29

g tutorialspoint

C Programming

Line 2 - Value ofc is 11
Line 3 - Value ofc is 210
Line 4 - Value ofc is 2
Line 5 - Value ofc is 1
Line 6 - Value ofc is 21
Line 7 - Value ofc is 22
Relational Operators

The following table shows all the relational operators supported by C. Assume
variable A holds 10 and variable B holds 20, then:

Operator Description

Checks if the values of two operands are equal
or not. If yes, then the condition becomes
true.

Checks if the values of two operands are equal
or not. If the values are not equal, then the
condition becomes true.

Checks if the value of left operand is greater
than the value of right operand. If yes, then
the condition becomes true.

Checks if the value of left operand is less than
the value of right operand. If yes, then the
condition becomes true.

Checks if the value of left operand is greater
than or equal to the value of right operand. If
yes, then the condition becomes true.

Checks if the value of left operand is less than
or equal to the value of right operand. If yes,
then the condition becomes true.

§p tuteriaispoint

Example
(A == B) is not
true.

(A '= B) is true.

(A > B) is not
true.

(A < B) is true.

(A >= B) is not

true.

(A <= B) is true.

30

Example

C Programming

Try the following example to understand all the relational operators available in

C:

#include <stdio.h>

main()
{
int a = 21,
int b = 10;
int c ;
if (a=="b)
{
printf ("Line 1
}
else
{
printf ("Line 1
}
if (a<b)
{
printf ("Line 2
}
else
{
printf ("Line 2
}
if (a>b)
{
printf ("Line 3
}
else
{

aisequaltob \n");

ais not equal to b \n");

aislessthanb \n");

ais not less than b \n");

ais greater than b \n");

Egi>tutorialspoint

31

C Programming

printf ("Line3 - ais not greater than b \n"),
}
/* Lets change value of a and b */
a = 5;
b = 20;
if (a<=b)
{
printt ("Line4 - ais eitherlessthanorequalto b \n");
}
if ((b>=a)
{
printft ("Line5 - bis either greater than or equalto b \n"),
}

}

When you compile and execute the above program, it produces the following
result:

Line is not equaltob

Line is not lessthanb
Line greater than b

Line is either less than or equalto b

g b~ W N P
T 92 9 9 Q©
&

Line is either greater than or equaltob

Logical Operators

Following table shows all the logical operators supported by C language. Assume
variable A holds 1 and variable B holds 0, then:

Operator Description Example

&& Called Logical AND operator. If both the (A && B) is
operands are non-zero, then the condition false.
becomes true.

|| Called Logical OR Operator. If any of the two (A || B) is true.
operands is non-zero, then the condition

32

> utorialspoint

C Programming

becomes true.

Called Logical NOT Operator. It is used to !(A && B) is
reverse the logical state of its operand. If a true.

condition is true, then Logical NOT operator will

make it false.

Example

Try the following example to understand all the logical operators available in C:

{

#include <stdio.h>

main()

int a =5;
int b = 20;

int c ;

if (a&&b)
{
printf ("Line1 - Condition is true \n");
}
it (all b)
{
printt ("Line2 - Condition is true \n");
}
/* lets change the value of a and b */
a=_0;
b = 10;
if (a&&b)
{

printt ("Line 3 - Condition is true \n"),

}

else

33

g tutorialspoint

C Programming

{
printf ("Line3 - Condition is not true \n"),
}
if (!(a&&b))
{
printf ("Line4 - Condition is true \n"),
}

}

When you compile and execute the above program, it produces the following
result:

Line 1 - Condition is true
Line 2 - Condition is true
Line 3 - Condition is not true
Line 4 - Condition is true
Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation. The truth table
for &, |, and ~ is as follows:

p q Pp&q Plq Prq
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume A = 60 and B = 13; in binary format, they will be as follows:
A = 0011 1100
B = 0000 1101

34

g tutorialspoint

C Programming

A&B = 0000 1100
A|B =0011 1101
A”~B = 0011 0001
~A =1100 0011

The following table lists the bitwise operators supported by C. Assume variable

‘A’ holds 60 and variable ‘B’ holds 13, then:

Operator Description

Example

& Binary AND Operator copies a bit to the result (A & B) = 12, i.e.,
if it exists in both operands. 0000 1100
Binary OR Operator copies a bit if it exists in (A | B) = 61, i.e,,
either operand. 0011 1101

N Binary XOR Operator copies the bit if it is set (A~ B) =49, i.e,,
in one operand but not both. 0011 0001

~ Binary Ones Complement Operator is unary (~A) = -61, i.e,,
and has the effect of 'flipping' bits. 1100 0011 in 2's

complement form.

<< Binary Left Shift Operator. The left operands A << 2 = 240,
value is moved left by the number of bits i.e., 1111 0000
specified by the right operand.

>> Binary Right Shift Operator. The left operands A >> 2 = 15, i.e,,
value is moved right by the number of bits 0000 1111
specified by the right operand.

Example

Try the following example to understand all the bitwise operators available in C:

#include <stdio.h>

main()

{

35

§p tuteriaispoint

C Programming

unsigned int

unsigned int

60; /*60 = 0011 1100 */
13; /*13 = 0000 1101 */

int ¢ = 0;
c=aé&b; /*12 = 0000 1100 */
printt ("Linel - Valueofcis%d \n", c);
c =a]| b; /61 =0011 1101 %
printt ("Line2 - Valueofcis%d \n", c);
c=a"b; /*49 = 0011 0001 */
printt ("Line3 - Valueofcis%d \n", c),
c = ~a; /*-61=1 100 0011 */
printt ("Line4 - Valueofcis%d \n", c),
C = a << 2 /240 = 1111 0000 */
printt ("Line5 - Valueofcis%d \n", c);
c =a> 2 /15 =0000 1111 */
printt ("Line6 - Valueofcis%d \n", c);

}

When you compile and execute the above program, it produces the following

result:

Line 1 - Value ofc is 12

Line 2 - Value ofc is 61

Line 3 Value ofc is 49

Line 4 Value ofc is -61

Line 5 - Value ofc is 240

Line 6 - Value ofc is 15

g tutorialspoint

36

Assignment Operators

C Programming

The following tables lists the assignment operators supported by the C language:

Operator Description

%=

<<=

>>=

Simple assignment operator. Assigns
values from right side operands to left
side operand.

Add AND assignment operator. It adds the
right operand to the left operand and
assigns the result to the left operand.

Subtract AND assignment operator. It
subtracts the right operand from the left
operand and assigns the result to the left
operand.

Multiply AND assignment operator. It
multiplies the right operand with the left
operand and assigns the result to the left
operand.

Divide AND assignment operator. It
divides the left operand with the right
operand and assigns the result to the left
operand.

Modulus AND assignment operator. It
takes modulus using two operands and
assigns the result to the left operand.

Left shift AND assignment operator.

Right shift AND assignment operator.

Bitwise AND assignment operator.

§p tuteriaispoint

Example

C = A + B will assign
the value of A + B to
C

C += A is equivalent

toC=C+A
C -= A is equivalent
toC=C-A

C *= A is equivalent
toC=C*A

C /= A is equivalent
toC=C/A

C %= A is equivalent
toC=C%A

C <<= 2issame as C
=C<<?2

C >>= 2 issame as C
=C>>2

C &= 2 is same as C

37

C Programming

=C&2
N= Bitwise exclusive OR and assignment C ~= 2 is same as C
operator. =C~"N2

= Bitwise inclusive OR and assignment C |= 2 issameasC =

operator.

Example

C|2

Try the following example to understand all the assignment operators available

in C:

#include <stdio.h>

main()

{
int a = 21;
int c ;
cC = &

Operator Example, Value of ¢ = %d

printt ("Linel -

c += &g

printt ("Line2 - += Operator Example, Value of ¢c = %d
c-= g

printt ("Line3 - -=Operator Example, Value of ¢ = %d
c*= a

printt ("Line4 - *= Operator Example, Value of ¢ = %d

\n", ¢);
\n", ¢);
\n", ¢);
\n", ¢);

g tutorialspoint

38

C Programming

c /= a
printt ("Line5 - /= Operator Example, Value of ¢ = %d \n", c);
c = 200;
c %= a;
printt ("Line 6 - %= Operator Example, Value of ¢ = %d \n", ¢);
C <<= 2;
printt ("Line7 - <<= Operator Example, Value of ¢ = %d \n", ¢);
c >>= 2;
printf ("Line8 - >>= Operator Example, Value of ¢ = %d \n", c);
c &= 2;
printt ("Line9 - &= Operator Example, Valu eofc=%d \n", c),
c = 2
printt ("Line 10 - = Operator Example, Value of ¢ = %d \n", ¢);
cl= 2
printf ("Line 11 - |= Operator Example, Value of ¢ = %d \n", ¢);
}
When you compile and execute the above program, it produces the following
result:
Line 1 - = Operator Example, Value ofc = 21
Line 2 - += Operator Example, Value ofc = 42
Line 3 - -= Operator Example, Value ofc = 21
Line 4 - *= Operator Example, Value ofc = 441
Line 5 - /= Operator Example, Value ofc = 21
Line 6 - %=Opegator Example, Value ofc = 11
Line 7 - <<= Operator Example, Value ofc = 44
Line 8 - >>= Operator Example, Value ofc = 11

g tutorialspoint

39

C Programming

Line 9 - &= Operator Example, Value ofc =2
Line 10 - "= Operator Example, Value ofc =0

Line 11 - |= Operator Example, Value of ¢ = 2

Misc Operatorsm sizeof & termary

Besides the operators discussed above, there are a few other important
operators including sizeof and ? : supported by the C Language.

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is
integer, will return 4.

& Returns the address of a variable. &a; returns the actual
address of the
variable.

* Pointer to a variable. *a;

7 Conditional Expression. If Condition is true ?

then value X
otherwise value Y

Example

Try following example to understand all the miscellaneous operators available in
C:

#include <stdio.h>

main()

{
int a = 4;
short b;
double c;
int * ptr ;

40

> utorialspoint

C Programming

[* example of sizeof operator */
printt ("Linel - Size of variable a = %d \n", sizeof (a));
printf ("Line2 - Size of variable b = %d \n", sizeof (b));

printt ("Line 3 - Size of variable c= %d \n", sizeof (c));

/* example of & and * operators */
ptr = &a; [* 'ptr' now contains the address of 'a™*/
printf ("value of ais %d \n", a);

printf ("*ptris %d. \n", *ptr);

/* example of ternary operator */

a = 10;

b=(a==1) ? 20 30;

printt ("Valueofbis%d \n", b);

b =(a==10) ? 20: 30;
printt ("Valueofb is%d\n", b);

}

When you compile and execute the above program, it produces the following
result:

valueofa is 4
*ptr is 4.

Value ofb is 30
Value ofb is 20

Operators Precedence in C

Operator precedence determines the grouping of terms in an expression and
decides how an expression is evaluated. Certain operators have higher
precedence than others; for example, the multiplication operator has a higher
precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator *
has a higher precedence than +, so it first gets multiplied with 3*2 and then
adds into 7.

41

g tutorialspoint

C Programming

Here, operators with the highest precedence appear at the top of the table,
those with the lowest appear at the bottom. Within an expression, higher
precedence operators will be evaluated first.

Category Operator Associativity
Postfix O[]->.++-- Left to right
Unary + -1~ +4 - - (type)* & sizeof Right to left
Multiplicative */ % Left to right
Additive + - Left to right
Shift << >> Left to right
Relational < <=>>= Left to right
Equality == I= Left to right
Bitwise AND & Left to right
Bitwise XOR N Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR || Left to right
Conditional ?: Right to left
Assignment = +=-=* = [= YPp=>>= <<= &= "= |= Right to left
Comma , Left to right

42

> utorialspoint

C Programming

Example

Try the following example to understand operator precedence in C:

}

#in clude <stdio.h>

main()
{
int a = 20;
int b = 10;
int ¢ = 15;
int d=5;
int e;
e=(a+b) *c/ d /1 (30*15)/5
printf ("Value of (a+b)*c/dis: %d \n", e);

e=((a+bhb) *c)/ d /1(30*15)/5
printf ("Value of (a+b)*c)/dis : %d \n" , e);

e=(a+b) * (c/ d) /1 (30) * (15/5)
printf ("Value of (a + b) * (c/d)is : %d \n", e);

e=za+(b*c)/ d /I 20 + (150/5)
printf ("Valueofa+(b*c)/dis : %d \n" , e);

return O;

When you compile and execute the above program, it produces the following
result:

Value of (a+b) *c/ dis : 90
Value of ((a+b) *c) / dis : 90
Value of (a+b) * (c/ d) is : 90
Value ofa + (b *c¢) / dis : 50

43

Stutorialspoint

C Programming

44

) tutorialspoint

SIMPLYE YLEARNING

10.DECISION MING

Decision-making structures require that the programmer specifies one or more
conditions to be evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be
false.

Shown below is the general form of a typical decision-making structure found in
most of the programming languages:

if condition
is false

If condition
is true

conditional '
code

C programming language assumes any non-zero and non-null values as true,
and if it is either zero or null, then it is assumed as false value.

C programming language provides the following types of decision-making
statements.

Statement Description

if statement An if statement consists of a boolean expression
followed by one or more statements.

if...else statement An if statement can be followed by an
optional else statement, which executes when

45

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

the Boolean expression is false.

nested if statements You can use one if or else if statement inside
another if or else if statement(s).

switch statement A switch statement allows a variable to be tested
for equality against a list of values.

nested switch statements You can use one switch statement inside another
switch statement(s).

If Statement

An if statement consists of a Boolean expression followed by one or more
statements.

Syntax

The syntax of an ‘if’ statement in C programming language is:

if (boolean_expression)

{

[* statement(s) will execute if the boolean expression is true */

}

If the Boolean expression evaluates to true, then the block of code inside the ‘if’
statement will be executed. If the Boolean expression evaluates to false, then
the first set of code after the end of the ‘if’ statement (after the closing curly
brace) will be executed.

C programming language assumes any non-zero and non-nullvalues
as true and if it is either zero or null, then it is assumed as false value.

Flow Diagram

46

> utorialspoint

If condition
is true

If condition

is false conditional code

Example

C Programming

int

{

}

#include <stdio.h>

main ()

/* local variable definition */
int a = 10;

/* check the boolean condition using if statement */
if (a<20)

{
[* if condition is true then print the following */
printf ("ais less than 20 \n");

}

printf ("value of a is : %d \n", a);

return 0O;

When the above code is compiled and executed, it produces the following result:

ais lessthan 20;

g tutorialspoint

47

C Programming

value of a is : 10

if.. .else Statement

An if statement can be followed by an optional else statement, which executes
when the Boolean expression is false.

Syntax

The syntax of an if...else statement in C programming language is:

if (boolean_expression)

{
[* statement(s) will execute if the boolean expression is true */
}
else
{
* statement(s) will execute if the boolean expression is false */
}

If the Boolean expression evaluates to true, then the if block will be executed,
otherwise, the else block will be executed.

C programming language assumes any non-zero and non-null values as true,
and if it is either zero or null, then it is assumed as false value.

Flow Diagram

If condition
is true

condition

If condition
is false

else code

48

g tutorialspoint

C Programming

Example

#include <stdio.h>

int main ()
{
/* local variable definition */
int a = 100;
* check the boolean condition * /
if (a<20)
{

[* if condition is true then print the following */

printf ("ais less than 20 \n");

}

else

{
[* if condition is false then print the following */
printf ("ais not less than 20 \n"),

}

printf ("value of ais : %d \n", a);

return O;

}
When the above code is compiled and executed, it produces the following result:

ais not lessthan 20;

value of a is : 100

If...else If...else Statement

An if statement can be followed by an optional else if...else statement, which is
very useful to test various conditions using single if...else if statement.

W

hen using if...else if...else statements, there are few points to keep in mind:
e An if can have zero or one else's and it must come after any else if's.

e An if can have zero to many else if's and they must come before the else.

49

g tutorialspoint

C Programming

e Once an else if succeeds, none of the remaining else if's or else's will be
tested.

Syntax

The syntax of an if...else if...else statement in C programming language is:

if (boolean _expression 1)

{
/* Executes when the boolean expression 1 is true */
}
else if (boolean_expression 2)
{
/* Executes when the boolean expression 2 is true */
}
else if (boolean_expression 3)
{
/* Executes when the boolean expression 3 is true */
}
else
{
[* executes when the none of the above condition is true */
}
Example

#include <stdio.h>

int main ()

{
/* local variable definition */
int a = 100;

/* check the boolean condition */
if (a==10)
{

[* if condition is t rue then print the following */

50

g tutorialspoint

C Programming

printf ("Value of ais 10 \n"),

}
else if (a ==20)
{
[* if else if condition is true */
printf ("Value of a is 20 \n");
}
else if (a==230)
{
[* if else if condition is true */
printf ("Value of ais 30 \n");
}
else
{
[* if none of the conditions is true */
printf ("None of the values is matching \n"),
}
printf ("Exact value of a is: %d \n", a);
return O;

}

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

Nested if Statements

It is always legal in C programming to nest if-else statements, which means you
can use one if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

if (boolean_expression 1)

{

51

g tutorialspoint

C Programming

[* Executes when the boolean expression 1 is true */

if (boolean_expression 2)

{

/* Executes when the boolean expression 2 is tru e

}

You can nest else if...else in the similar way as you have nested if statements.

Example

#include <stdio.h>

int main ()

{
/* local variable definition */
int a = 100;
int b = 200;

/* check the boolean condition */

if (a==100))
{
[* if condition is true then check the following */
if (b ==200)
{
/* if condition is true then print the following */
printf ("Value of aiis 100 and b is 200 \n");
}
}
printf ("Exact value of ais:%d \n", a);
printf ("Exact value of b is : %d \n", b))
return O;

}

When the above code is compiled and executed, it produces the following result:

52

g tutorialspoint

C Programming

Value ofa is 100 and b is 200
Exact value of a is : 100

Exact value of b is : 200

switch Statement

A switch statement allows a variable to be tested for equality against a list of
values. Each value is called a case, and the variable being switched on is
checked for each switch case.

Syntax
The syntax for a switch statement in C programming language is as follows:

switch (expression){
case constant - expression
statement (s);
break ; /* optional */
case constant - expression
statement (s);

break ; /* optional */

/* you can have any number of case statements */
default : /* Optional */

statement (s);

}

The following rules apply to a switch statement:

¢ The expression used in aswitch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.

¢ You can have any number of case statements within a switch. Each case is
followed by the value to be compared to and a colon.

¢ The constant-expression for a case must be the same data type as the
variable in the switch, and it must be a constant or a literal.

e When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

¢ When a break statement is reached, the switch terminates, and the flow
of control jumps to the next line following the switch statement.

53

§p tuteriaispoint

C Programming

e Not every case needs to contain a break. If no break appears, the flow of
control will fall through to subsequent cases until a break is reached.

e Aswitch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for
performing a task when none of the cases is true. No break is needed in
the default case.

Flow Diagram

expression

£ane | code block 1
case 2 code block 2
case 3

code block 3

NN

f

default

code block N

Example

#include <stdio.h>

int main ()

{

/* local variable definition */

char grade = 'B' ;

switch (grade)
{

case 'A'

54

g tutorialspoint

C Programming

printf ("Excellent! \n");
break ;
case 'B'
case 'C'
printf ("Wdl done \n");
break ;
case 'D’
printf ("You passed \n");
break ;
case 'F
printf ("Better try again \n"),
break ;
default
printt ("Invalid grade \n");
}

printt ("Your gradeis %c \n", grade);

return O;

}

When the above code is compiled and executed, it produces the following result:

Well done

Your grade is B

Nested switch Statements

It is possible to have a switch as a part of the statement sequence of an outer
switch. Even if the case constants of the inner and outer switch contain common
values, no conflicts will arise.

Syntax

The syntax for a nested switch statement is as follows:

switch (chl) {
case 'A' :

printt ("This A is part of outer switch");

55

g tutorialspoint

C Programming

switch (ch2) {
case 'A' :
printf ("This A is part of inner switch")i
break ;
case 'B' : /*case code */
}
break ;

case 'B' : /[*case code */

Example

#include <stdio.h>

int main ()

{

/* local variable definition */
int a = 100;
int b = 200;

switch (a) {
case 100:

printf ("This is part of outer switch \n", a);
switch (b) {
case 200:

printf ("This is part of inner switch \n", a);

}
printf ("Exact value of a is : %d \n", a);

printf ("Exact value of b is : %d \n", b))

return O;

When the above code is compiled and executed, it produces the following result:

56

g tutorialspoint

C Programming

This is part of outer switch
This is part of inner switch
Exact valueofa is : 100

Exact value of b is : 200

The ? : Operator:

We have covered conditional operator ? : in the previous chapter which can be
used to replace if...else statements. It has the following general form:

Expl ? Exp2 : EXxp3;

Where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of
the colon.

The value of a ? expression is determined like this:

1. Expl is evaluated. If it is true, then Exp2 is evaluated and becomes the
value of the entire ? expression.

2. If Expl is false, then Exp3 is evaluated and its value becomes the value of
the expression.

57

g tutorialspoint

11 LOOPS

You may encounter situations when a block of code needs to be executed
several number of times. In general, statements are executed sequentially: The
first statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements
multiple times. Given below is the general form of a loop statement in most of
the programming languages:

If condition
is true

If condition
is false

C programming language provides the following types of loops to handle looping
requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a
given condition is true. It tests the condition before
executing the loop body.

for loop Executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

58

' tutorialspoint

SIMPLYEASYLEARNING

C Programming

do...while loop It is more like a while statement, except that it tests
the condition at the end of the loop body.

nested loops You can use one or more loops inside any other while,
for, or do..while loop.

while Loop

A while loop in C programming repeatedly executes a target statement as long
as a given condition is true.

Syntax
The syntax of a while loop in C programming language is:

while (condition)

{

statement (s);

}

Here, statement(s) may be a single statement or a block of statements.
The condition may be any expression, and true is any nonzero value. The loop
iterates while the condition is true.

When the condition becomes false, the program control passes to the line
immediately following the loop.

Flow Diagram

59

g tutorialspoint

code block If condition

Example

If

is true

while(condition)

{
}

conditional code ;

condition

is false

.

Here, the key point to note is that a while loop might not execute at all. When
the condition is tested and the result is false, the loop body will be skipped and
the first statement after the while loop will be executed.

C Programming

#include <stdio.h>

int main ()
{
/* local variable definiti

int a = 10;

/* while loop execution */
while (a < 20)
{

printf ("value of a: %d

a++;

on */

\n",

a);

(9> tutorialspoint

60

C Programming

return O;

}

When the above code is compiled and executed, it produces the following result:

valueofa : 10
valueofa : 11
valueofa : 12
valueofa : 13
valueofa : 14

valueofa : 15

valueofa : 16

valueofa : 17

valueofa : 18

valueofa : 19
for Loop

A for loop is a repetition control structure that allows you to efficiently write a
loop that needs to execute a specific number of times.

Syntax
The syntax of a for loop in C programming language is:

for (init ; condition ; increment)

{

statement (s);

}

Here is the flow of control in a ‘for’ loop:

1. Theinitstep is executed first, and only once. This step allows you to
declare and initialize any loop control variables. You are not required to
put a statement here, as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is
executed. If it is false, the body of the loop does not execute and the flow
of control jumps to the next statement just after the ‘for’ loop.

3. After the body of the ‘for’ loop executes, the flow of control jumps back up
to the increment statement. This statement allows you to update any
loop control variables. This statement can be left blank, as long as a
semicolon appears after the condition.

61

> utorialspoint

C Programming

4. The condition is now evaluated again. If it is true, the loop executes and
the process repeats itself (body of loop, then increment step, and then

again condition). After the condition becomes false, the ‘for’ loop
terminates.

Flow Diagram

for(init; condition; increment)

{
}

conditional code ;

— condition

If condition
is true

code block If condition
is false

— increment

Example

#include <stdio.h>

int main ()

{
[* for loop execution */
for (int a=10; a<20; a=a+1)
{

printf ("value ofa: %d \n", a);

62

Dtutorialspoint

SYLEARNING

C Programming

return O;

}

When the above code is compiled and executed, it produces the following result:

valueofa : 10
valueofa : 11
valueofa : 12
valueofa : 13
valueofa : 14
valueofa : 15

valueo fa : 16

valueofa : 17

valueofa : 18

valueofa : 19
do...while Loop

Unlike for and while loops, which test the loop condition at the top of the loop,
the do...while loop in C programming checks its condition at the bottom of the
loop.

A do...while loop is similar to a while loop, except the fact that it is guaranteed
to execute at least one time.

Syntax

The syntax of a do...while loop